a2 United States Patent
Wei et al.

US009275128B2

US 9,275,128 B2
Mar. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND SYSTEM FOR DOCUMENT
INDEXING AND DATA QUERYING

(75) Inventors: Lei Wei, Beijing (CN); Jiaxiang Shen,
Hangzhou (CN)

(73) Assignee: Alibaba Group Holding Limited (KY)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 841 days.

(21) Appl. No.: 12/804,441

(22) Filed: Jul. 20,2010

(65) Prior Publication Data
US 2011/0022596 A1l Jan. 27, 2011

(30) Foreign Application Priority Data

Jul. 23,2009 (CN) .ocoveiiicieecee 2009 1 0151487

(51) Imt.ClL
GO6F 17/30
(52) US.CL
CPC GO6F 17/30613 (2013.01); GOG6F 17/30619
(2013.01); GOGF 17/30669 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(2006.01)

(56) References Cited
U.S. PATENT DOCUMENTS

5,235,654 A 8/1993 Anderson et al.
6,128,613 A 10/2000 Wong et al.
6,263,335 B1* 7/2001 Paik et al.
6,631,373 B1 10/2003 Otani et al.
6,640,225 B1 10/2003 Takishita et al.

6,697,801 B1*
7,039,636 B2*
7,254,580 Bl

2/2004 FEldredge et al.
5/2006 Tada et al.
8/2007 Gharachorloo et al.

400

~

7,458,022 B2 112008 Ramarao

7,487,138 B2 2/2009 Borthakur et al.

7,555,431 B2* 6/2009 Bennettcoeunin. 704/255
7,617,249 B2 112009 Thusoo et al.

7,624,007 B2 *

11/2009 Bennettccccoevevievennnne 704/9
12/2010 Abir
12/2001 Meystel et al.

7,860,706 B2 *
2001/0056445 Al

2002/0022953 Al* 2/2002 Bertolusetal. 704/1
2003/0009447 Al* 12003 Murray etal.c.cceee. 707/3
(Continued)

FOREIGN PATENT DOCUMENTS

Jp H07105237 4/1995
Jp H10312395 11/1998
(Continued)
OTHER PUBLICATIONS

Kontinen et al. “On second-order monadic groupoidal quantifiers.”
Logic, Language, Information and Computation. Springer Berlin
Heidelberg, 2008. 238-248.

Primary Examiner — Christyann Pulliam
Assistant Examiner — Mellissa M Ohba
(74) Attorney, Agent, or Firm — Van Pelt, Yi & James LLP

(57) ABSTRACT

Generating a document index comprises: obtaining a docu-
ment to be indexed; determining whether each monadic par-
tition obtained from the document is a filter character and if
so, forming a polynary partition with the monadic partition
and at least one adjacent monadic partition and indexing the
polynary partition, otherwise, indexing the monadic parti-
tion. Querying data comprising: receiving a data query, deter-
mining whether each monadic partition obtained from the
data query is a filter character and if so, forming a polynary
partition with the monadic partition and at least one adjacent
monadic partition and using the polynary partition to obtain
search results, otherwise, using the monadic partition to
obtain search results; and combining search results to form a
final query search result.

12 Claims, 8 Drawing Sheets

Receive a data query

}

Perform a monadic partition operation on the
data query to obtain monadic partitions

Determining whether
each monadic partition is a
filter character

450

Search a previously
established index using the
monadic partition and obtain
corresponding query result(s)

Form a polynary partition by combining a
monadic partition with at least one monadic
partition adjacent to the monadic partition and
ing the index established ding to the

polynary partition

/440

!

search in a previously established search index
using the polynary partition and obtain
corresponding query result(s)

/445

!

60

Combine the query results for all partitions to

form a final search result

US 9,275,128 B2
Page 2

(56)

2003/0059115
2003/0120649
2003/0182310
2003/0212674
2003/0233365
2005/0086224
2007/0027854
2007/0106492
2007/0233460

U.S. PATENT DOCUMENTS

Al*
Al*
Al*
Al*
Al*
Al*
Al

Al*
Al*

References Cited

3/2003
6/2003
9/2003
11/2003
12/2003
4/2005
2/2007
5/2007
10/2007

Nakagawa

Uchino et al. ..
Charnock et al.
Nakagawa
Schmit et al. ...

......... 382/197

........ 707/5
. 707/104.1
........ 707/3
707/100

2008/0077570 Al 3/2008
2008/0155239 Al* 6/2008
2009/0210855 Al* 8/2009
2009/0297044 Al* 12/2009
2010/0235164 Al* 9/2010

Tang et al.

Chowdhury et al. 712/245
Ramanathan ... 717/102
Kokumai et al. 382/219
Todhunter et al. 704/9

FOREIGN PATENT DOCUMENTS

JP 2003208433
JP 2009104669
WO 0208963

* cited by examiner

7/2003
5/2009
1/2002

U.S. Patent Mar. 1, 2016 Sheet 1 of 8 US 9,275,128 B2

Processor [~ 102

114 —

118 —{ Display

Memory — 110

104 -4 Keyboard

Removable
Mass Storage — 112
Device
106 — Pomtlng
Device
Fixed Mass
Storage Device — 120
Network
116 Interface

FIG. 1A

U.S. Patent Mar. 1, 2016 Sheet 2 of 8 US 9,275,128 B2

150
N
152 154
- -
Crawling Indexing
module module
158 156
- -
User interface Querying
module module
Search Engine

FIG. 1B

U.S. Patent Mar. 1, 2016 Sheet 3 of 8 US 9,275,128 B2

200

~

210
Obtain a document /

A

Perform a monadic partition a operation on the / 220
document and obtain a plurality of monadic
partitions

230 No 250

/

the monadic partition is
indexed directly

Determining whether each
monadic partition is a filter
character

240

—

Forming a polynary partition by combinir:F a
monadic partition with at least one monadic
partition adjacent to the monadic partition, then
this polynary partition is indexed.

FIG. 2

U.S. Patent Mar. 1, 2016 Sheet 4 of 8 US 9,275,128 B2

310
-

Preset a filter-characters list

\ 320
Obtain a document to be indexed /

A

Perform a monadic operation on the document to / 330
obtain a plurality of monadic partitions of the
document

A

340
—

———— Traverse the monadic partitions

346
No /

index the monadic
partition directly

Determine whether a monadic partition
is a filter character by looking up in
the filter-characters list

/ 344
Form a binary partition by combining a monadic
partition with another monadic partition adjacent
to it and index the binary partition

348
No

of the monadic partitions ar
traversed?

A

l Yes 350

End

FIG.3

U.S. Patent Mar. 1, 2016 Sheet 5 of 8 US 9,275,128 B2

400

~

/41 0
Receive a data query

y

20
Perform a monadic partition operation on the /4
data query to obtain monadic partitions

450

L~

Search a previously
No established index using the
monadic partition and obtain
corresponding query result(s)

Determining whether
each monadic partition is a
filter character

Form a polynary partition by combining a 40
monadic gartition with at least one monadic /4
partition adjacent to the monadic partition and
searching the index established according to the

polynary partition

» \ /445
search in a previously established search index
using the polynary partition and obtain
corresponding query result(s)

h 4

60
Combine the query results for all partitions to /4
form a final search result ~

FIG. 4

U.S. Patent

Mar. 1, 2016 Sheet 6 of 8

US 9,275,128 B2

500

~

. /—51 0
Receive a data query

y

Perform a monadic partition operation on the /520
data to be queried to obtain a plurality of

monadic partitions

L /530
Traverse the monadic partitions

532

No 536

Determine whether the Seta%clh Erz"l‘;?us'y
current monadic partition is a filter esa?tit;gnz i il‘:égg’
haracter by searching the filte P directl
characters list Y

534

—

Form a binary partition by combining a monadic partition
with another monadic partition adjacent to the monadic
partition and search a previously established binary-
partitioned index

) all of the
onadic partitions are traversed?

A

+ Yes

— . - 540
Combining all the query results obtained after /
searching the index

FIG. 5

U.S. Patent

Mar. 1, 2016

/610

obtaining unit

Sheet 7 of 8

/620

/640

indexing unit

partition unit

/630

determining unit

US 9,275,128 B2

700

~
/—730

FIG. 6

740
.

obtaining unit

partition unit

760
/—

750
/

indexing unit

determining unit

710
/—

presetting unit

720
/—

FIG. 7

loading unit

U.S. Patent Mar. 1, 2016

800
N

/810

Sheet 8 of 8

/820

obtaining unit

/840

partition unit

/830

searching unit

/850

combining unit

900

determining unit

FIG. 8

/920

/930

obtaining unit

/950

partition unit

/940

searching unit

/960

combining unit

FIG. 9

determining unit

/910

loading unit

US 9,275,128 B2

US 9,275,128 B2

1
METHOD AND SYSTEM FOR DOCUMENT
INDEXING AND DATA QUERYING

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority to People’s Republic of
China Patent Application No. 200910151487.2 entitled
DOCUMENT INDEXING METHOD, DATA QUERY
METHOD AND SERVER FOR SEARCH ENGINE filed Jul.
23, 2009 which is incorporated herein by reference for all
purposes.

FIELD OF THE INVENTION

The present invention relates to the technical field of infor-
mation technology and, in particular, to document indexing
and data querying.

BACKGROUND OF THE INVENTION

A search engine is designed to search for information on
the World Wide Web. It often collects information on the
Internet through specific computer programs according to
certain policies. A search engine also provides a retrieval
service to users. That is, it organizes and processes informa-
tion that it collects, and it displays the processed information
to users.

Web search engines typically work by storing information
about many web pages. These pages are retrieved by infor-
mation capture systems referred to as Web crawlers (some-
times also known as spiders). A Web crawler is a computer
program that browses the World Wide Web in a methodical,
automated manner or in an orderly fashion. This process is
called Web crawling or spidering. Most Web crawlers are
used to create a copy of all the visited pages for later process-
ing by a search engine that will index the downloaded pages
to provide fast searches. In general, a Web crawler starts with
a list of URLSs to visit, referred to as the seeds. As the crawler
visits these URLs, it identifies all the hyperlinks in the page
(referred to as the crawl frontier) and adds them to the list of
URLs to visit. URLs from the frontier are recursively visited
according to a set of policies. Web pages are captured in this
crawling process along with the hyperlinks. The web pages
are called web page snapshots. Because hyperlinks are widely
used on the Internet, theoretically, most of the web pages can
be collected starting from certain web pages. When the cap-
tured web pages are processed, keywords are extracted and
indexes are established in order to provide search services.
Then, when a user enters a query into a search engine (typi-
cally by using key words), the search engine examines its
index and provides a listing of best-matching Web page URLs
according to its criteria, usually with a short summary con-
taining the document title and sometimes part of the text. The
index is built from the information stored with the data and the
method by which the information is indexed. The usefulness
of'a search engine depends on the relevance of the result set it
gives back. While there may be many pages that include a
particular word or phrase, some pages may be more relevant,
popular, or authoritative than others. Most search engines
employ methods to rank the results to provide the “best”
results first. How a search engine decides which pages are the
best matches and what order the results should be shown in,
varies widely from one search engine to another.

In particular, for a search engine with the capacity to search
Chinese characters, a Chinese character partitioning opera-
tion is needed during indexing and querying processes. The

10

15

20

25

30

35

40

45

50

55

60

65

2

conventional Chinese partitioning method uses a monadic
partition method in which each Chinese character in a sen-
tence is taken as a single unit. For example, after a monadic
partition of the phrase of “#E&” (“China country stock
market,” also translated as “Chinese stock market™), the result
set contains four single characters: “#.” (“Chinese,”)
“E,” (“country,”) “B” (“stock,”) and “ifi” (“market,”)
respectively. Here, the appearance probability for the charac-
ter “i” (“market™) in a single search engine server that
indexes 6 million documents is as high as 93%. Therefore, the
query of “.,” (“market”) will consume a large portion of the
search engine server’s resources during the “FEE®” (“Chi-
nese stock market”) query if a monadic partition method is
used. In order to avoid such a situation, a list of high-fre-
quency characters is pre-stored in the search engine and high-
frequency characters are filtered before conducting the query.
Such high-frequency characters are referred to as “filter char-
acters.” Using the same example, a query of “#E#&®” (“Chi-
nese stock market”) will be simplified as a query of
“FER” (“Chinese stock™) in order to skip the high-frequency
character “7™ (“market”) in a query.

However, since indexing and querying are carried out by
omitting high-frequency characters in the conventional
monadic partition method, the result set may not be accurate.
Again, using “#EE” (“Chinese stock market”) as an
example, because “1” (“market”) is omitted in the query, the
query result set may contain a large number of
“#ERE" (“Chinese stock investors”) and “#&E&®” (“Chi-
nese stock shares”), etc., which contain “+Ei” (“Chinese
stock™), but do not accurately match the user’s query. There-
fore, more accurate and more efficient indexing and querying
techniques are needed.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1A is afunctional diagram illustrating an embodiment
of'a programmed computer system for providing techniques
for indexing and querying document data.

FIG. 1B is a schematic diagram illustrating a search engine
deploying an embodiment of the document querying and data
indexing system.

FIG. 2 is a flow chart illustrating an embodiment of a
document indexing process.

FIG. 3 is a flow chart illustrating another embodiment of a
document indexing process.

FIG. 4 is a flowchart illustrating an embodiment of a search
engine data query process.

FIG. 5 is a flowchart illustrating another embodiment of a
search engine data query process.

FIG. 6 is a block diagram illustrating an embodiment of a
system configured to index documents.

FIG. 7 is a block diagram illustrating another embodiment
of a system configured to index documents.

FIG. 8 is a block diagram illustrating an embodiment of a
system configured to perform data querying for a search
engine.

FIG. 9 is a block diagram illustrating another embodiment
of a system configured to perform data querying for a search
engine.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composition

US 9,275,128 B2

3

of matter; a computer program product embodied on a com-
puter-readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the
invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that is temporarily configured
to perform the task at a given time, or a specific component
that is manufactured to perform the task. As used herein, the
term “processor” refers to one or more devices, circuits, and/
or processing cores configured to process data, such as com-
puter program instructions.

A detailed description of one or more embodiments of the
invention is provided below, along with accompanying fig-
ures that illustrate the principles of the invention. The inven-
tion is described in connection with such embodiments, but
the invention is not limited to any embodiment. The scope of
the invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

FIG. 1A is a functional diagram illustrating an embodiment
of a programmed computer system for providing techniques
for indexing and querying document data. As will be appar-
ent, other computer system architectures and configurations
can be used to perform techniques for indexing and querying
document data. Computer system 100, which includes vari-
ous subsystems as described below, includes at least one
microprocessor subsystem (also referred to as a processor or
a central processing unit, CPU) 102. For example, processor
102 can be implemented by a single-chip processor or by
multiple processors. In some embodiments, processor 102 is
a general purpose digital processor that controls the operation
of the computer system 100. Using instructions retrieved
from memory 110, the processor 102 controls the reception
and manipulation of input data and the output and display of
data on output devices (e.g., display 118). In some embodi-
ments, processor 102, for example, in communication with a
memory 110 (or other computer readable storage medium
element(s)/device(s)), includes and/or is used to implement
techniques for indexing and querying document data as
described herein.

Processor 102 is coupled bidirectionally with memory 110,
which can include a first primary storage, typically a random
access memory (RAM), and a second primary storage area,
typically a read-only memory (ROM). As is well known in the
art, primary storage can be used as a general storage area and
as scratch-pad memory and can also be used to store input
data and processed data. Primary storage can also store pro-
gramming instructions and data, in the form of data objects
and text objects, in addition to other data and instructions for
processes operating on processor 102. Also as well known in
the art, primary storage typically includes basic operating
instructions, program code, data and objects used by the
processor 102 to perform its functions (e.g., programmed
instructions). For example, primary storage devices 110 can

10

15

20

25

30

35

40

45

50

55

60

65

4

include any suitable computer-readable storage media,
described below, depending on whether, for example, data
access needs to be bidirectional or unidirectional. For
example, processor 102 can also directly and very rapidly
retrieve and store frequently needed data in a cache memory
(not shown).

A removable mass storage device 112 provides additional
data storage capacity for the computer system 100 and is
coupled either bidirectionally (read/write) or unidirectionally
(read only) to processor 102. For example, storage 112 can
also include computer-readable media such as magnetic tape,
flash memory, PC-CARDS, portable mass storage devices,
holographic storage devices, and other storage devices. A
fixed mass storage 120 can also, for example, provide addi-
tional data storage capacity. The most common example of
mass storage 120 is a hard disk drive. Mass storage 112, 120
generally store additional programming instructions, data,
and the like that typically are not in active use by the processor
102. It will be appreciated that the information retained
within mass storage 112, 120 can be incorporated, if needed,
in standard fashion as part of primary storage 110 (e.g.,
RAM) as virtual memory.

In addition to providing processor 102 access to storage
subsystems, bus 114 can be used to provide access to other
subsystems and devices as well. As shown, these can include
a display monitor 118, a network interface 116, a keyboard
104, and a pointing device 106, as well as an auxiliary input/
output device interface, a sound card, speakers, and other
subsystems as needed. For example, the pointing device 106
can be a mouse, stylus, trackball, or tablet and is useful for
interacting with a graphical user interface.

The network interface 116 allows processor 102 to be
coupled to another computer, computer network, or telecom-
munications network using a network connection as shown.
For example, through the network interface 116, the proces-
sor 102 can receive information (e.g., data objects or program
instructions) from another network or output information to
another network in the course of performing method/process
steps. Information, often represented as a sequence of instruc-
tions to be executed on a processor, can be received from and
outputted to another network. An interface card, or similar
device, and appropriate software implemented by (e.g.,
executed/performed on) processor 102 can be used to connect
the computer system 100 to an external network and transfer
data according to standard protocols. For example, various
process embodiments disclosed herein can be executed on
processor 102, or can be performed across a network, such as
the Internet, intranet networks, or local area networks, in
conjunction with a remote processor that shares a portion of
the processing. Additional mass storage devices (not shown)
can also be connected to processor 102 through network
interface 116.

An auxiliary I/O device interface (not shown) can be used
in conjunction with computer system 100. The auxiliary [/O
device interface can include general and customized inter-
faces that allow the processor 102 to send and, more typically,
receive data from other devices such as microphones, touch-
sensitive displays, transducer card readers, tape readers,
voice or handwriting recognizers, biometrics readers, cam-
eras, portable mass storage devices, and other computers.

In addition, various embodiments disclosed herein further
relate to computer storage products with a computer readable
medium that includes program code for performing various
computer-implemented operations. A computer-readable
medium is any data storage device that can store data which
can thereafter be read by a computer system. Examples of
computer-readable media include, but are not limited to, all

US 9,275,128 B2

5

the media mentioned above: magnetic media such as hard
disks, floppy disks, and magnetic tape; optical media such as
CD-ROM disks; magneto-optical media such as optical
disks; and specially configured hardware devices such as
application-specific integrated circuits (ASICs), program-
mable logic devices (PLDs), and ROM and RAM devices.
Examples of program code include machine code, as pro-
duced, for example, by a compiler, or files containing higher
level code (e.g., script) that can be executed using an inter-
preter.

The computer system shown in FIG. 1A is but an example
of a computer system suitable for use with the various
embodiments disclosed herein. Other computer systems suit-
able for such use can include additional or fewer subsystems.
In addition, bus 114 is illustrative of any interconnection
scheme serving to link the subsystems. Other computer archi-
tectures having different configurations of subsystems can
also be utilized.

FIG. 1B is a schematic diagram illustrating a search engine
deploying an embodiment of the document querying and data
indexing system. Search engine 150 may be implemented
using one or more computing devices such as a personal
computer, a server computer, a handheld or portable device, a
flat panel device, a multi-processor system, a microprocessor
based system, a set-top box, a programmable consumer elec-
tronic device, a network PC, a minicomputer, a large-scale
computer, a special purpose device, a distributed computing
environment including any of the foregoing systems or
devices, or other hardware/software/firmware combination
that includes one or more processors and memory coupled to
the processors and configured to provide the processors with
instructions.

In the example shown, a search engine 150 includes: a
crawling module 152, an indexing module 154, a querying
module 156, and a user interface module 158. The crawling
module is adapted to find and collect Web page information
by roaming on the Internet using a Web crawler. The indexing
module is adapted to extract an index entry from a Web page
collected by the crawling module. The index is used to rep-
resent a document, and it is stored in an index table of a
document database. The querying module is adapted to
retrieve a document in the index database according to the
query of a user, sort the output results, and output reasonably
output feedback information according to a user’s query
requirement. The interface module is adapted to receive the
query request of a user and return the query results to the user.
The following embodiments of the invention mainly describe
the processes of the document indexing and data querying
functions of the search engine.

FIG. 2 is a flow chart illustrating an embodiment of a
document indexing process.

At 210, a document is obtained. In this example, the docu-
ment, such as a Web page, is obtained from the Internet by a
Web crawler of a search engine. The document is then stored
in data storage which is part of or connected to a search
engine. Example data storage can be a plurality of databases,
a plurality of disks, etc. The search engine will retrieve the
document from the data storage before it is indexed. In some
embodiments, the document is in a character based language
such as Chinese.

At 220, a monadic partition operation is performed on the
document. In other words, each character forms an individual
partitioning unit.

At 230, characters in the monadic partitions are compared
with a filter characters list to determine whether these char-
acters are filter characters.

10

15

20

25

30

35

40

45

50

55

60

65

6

A filter character is a high-frequency character that is omit-
ted by a search engine during a query process. Due to the
high-frequency appearance of filter characters in the docu-
ments stored in the search engine, large amounts of system
resources would be consumed if the filter characters were
included in the query. Therefore, statistically high-frequency
characters are predetermined and stored in a filter characters
list in the search engine. Before performing indexing or query
operation, a character in a monadic partition is compared with
the characters in the filter characters list to determine whether
this character is a filter character. For example, “#” (“mar-
ket”) in ““EE#” (“Chinese stock market”) is found in the
filter characters list of a search engine; thus, “/™ (“market”) is
a filter character and will be omitted from a query or an
indexing operation.

The monadic partition operations of the document are car-
ried out repeatedly. A series of monadic partitions are
obtained after the operations. Each of the monadic partitions
is compared against the filter characters list to determine
whether it is a filter character. If the document to be indexed
has only one character that is a high-frequency character (also
referred to as a filter character), such as “fi” (“market”), no
index will be established for the document.

At 240, if a character in a monadic partition is a filter
character, a polynary partition (also referred to as N-ary par-
tition) is formed by combining the monadic partition with at
least one monadic partition adjacent to the monadic partition,
and then the polynary partition is indexed. As used herein, a
polynary partition refers to a partition that is formed by at
least two adjacent monadic partitions.

In some embodiments, a binary partition is formed by
combining a monadic partition with its adjacent monadic
partition. Assuming a monadic partition P is determined to be
a high-frequency filter character, if P is the first monadic
partition in the document, a binary partition is formed by
combining P with its subsequent monadic partition; if P is the
last monadic partition in the document, a binary partition is
formed by combining P with its precedent monadic partition;
and if P is neither the first monadic partition nor the last
monadic partition in the document but appears somewhere in
the middle of the document, two binary partitions are formed
by combining P with the precedent monadic partition and the
subsequent monadic partition respectively. The binary parti-
tion(s) is(are) indexed. For example, “#” (“I”) is a high-
frequency filter character and it is a monadic partition. Ifit is
the first monadic partition in the document, it will combine
with a subsequent monadic partition such as “#9” (“of” a
possessive particle) to form a binary partition “H#” (“my”)
to be indexed.

Similarly, in some embodiments, a ternary partition can be
formed. For example, a ternary partition “FEA” (“China
country person” or “Chinese”) is formed from three monadic
partitions “F” (“China”), “E” (“country™), and “A” (“per-
son”). A quaternary partition can be formed in the same way
and so on.

At 250, if a character in a monadic partition is not a filter
character, this character is indexed directly.

240 and 250 may be repeated until all the monadic parti-
tions in the document are processed. Process 200 may be
repeated for multiple documents to create a search index.

FIG. 3 is a flow chart illustrating another embodiment of a
document indexing process. In this embodiment, a binary
partition is used to demonstrate the indexing process of a
document. Other polynary partitions such as tertiary partition
or quaternary partition can be implemented in a similar way.

At 310, a filter characters list is predetermined. In some
embodiments, a character’s frequency of appearance is cal-

US 9,275,128 B2

7

culated from a large set of sample Internet documents. The
criteria for determining whether a character is a filter charac-
ter and whether it should be included in the filter characters
list may be set according to the character’s appearance fre-
quency in the sample set of documents. For example, a
sample Internet documents set consists of six million docu-
ments. Monadic partition operations are carried out in each of
these six million documents. The characters in the monadic
partitions are sorted according to their appearance frequency
in these documents, and a high-frequency-characters list is
constructed by adding the X (e.g., 100) characters that have
the highest appearance frequency into the list. The filter char-
acters list can be adjusted dynamically over time as needed;
for example, when additional documents are added to the
sample set or when a different sample set is obtained.

At 320, a document to be indexed is obtained.

At 330, a monadic partition operation is performed on the
document to obtain a plurality of monadic partitions of the
document.

At 340, the monadic partitions are traversed; that is, pro-
cesses 342 to 346 are carried out for each monadic partition in
the document.

At342, a monadic partition of the document is looked up in
the filter character list to determine whether it is a filter
character.

At 344, if a monadic partition is a filter character, a binary
partition is formed by combining the monadic partition with
a monadic partition adjacent to it, and this binary partition is
indexed using standard indexing techniques such as keyword
indexing, hash value indexing, etc.

At 346, if a monadic partition is not a filter character, this
monadic partition is indexed directly.

At 348, if all the monadic partitions are traversed, the
indexing process for the document is completed. If so, the
process ends at 350. Else, control is transferred to 340 and the
next nomadic partition is processed.

Insome embodiments, a monadic partition in the document
is processed according to the following exemplary pseudo
code:

10

15

20

25

30

35

8

At 410, a data query is received. For example, the query is
input by a user from an Internet Website and is received by the
search engine.

At 420, a monadic partitioning operation is performed on
the data query to obtain a plurality of monadic partitions.

At 430, each monadic partition is compared with a filter
character list to determine whether it is a filter character. If so,
control is transferred to 440. Else, control is transferred to
450.

At 440, if a monadic partition is a filter character, a poly-
nary partition is formed on a monadic partition, combining it
with at least one adjacent monadic partition to form a poly-
nary partition.

At 445, a previously established index is searched using
this polynary partition and the query result is obtained. For
example, an index previously established by an indexing pro-
cess similar to 200 or 300 is searched using conventional
techniques such as keyword matching (where the polynary
partition is used as the search keyword) to identify documents
that match the query.

In some embodiments, a binary partition is formed by
combining a monadic partition and its adjacent monadic par-
tition. Assuming monadic partition P is determined to be a
high-frequency filter character, if P is the first monadic par-
tition in the document, a binary partition is formed by, com-
bining P with its subsequent monadic partition; if P is not the
first monadic partition in the document, a binary partition is
formed by combining P with its precedent monadic partition.

At 450, if a monadic partition is not a filter character, a
previously established index is searched for this monadic
partition and a query result is obtained.

At460, query results from monadic partitions and polynary
partitions are combined to form a final search result, which is
optionally presented to the user.

FIG. 5 is another flowchart illustrating an embodiment of a
search engine data query process. In this embodiment, binary
and tertiary partition is used to demonstrate the querying
process. However, polynary partitions other than the binary
partitions can be used in a similar way.

Token token=getCurrentToken();
If (isFreqWord(token))

// obtaining the current partition

Token token2 = mergeToken (prevToken, token);
//previous partition

indexToken(token2);

Token token3=mergeToken (nextToken, token);

indexToken (token3);

}

else
indexToken(token);

// establishing an index
// forming a new word with the
//subsequent partition

// establishing an index

// if the current partition is a high-frequency word

//forming a new word with the

//establishing an index directly if it

// is not a high-frequency word

The indexes established by the process above do not con-
tain index entries for high-frequency characters alone;
instead, binary partitions are formed from high-frequency
characters and characters adjacent to them, and these binary
partitions are indexed. Therefore, the accuracy of the subse-
quent data query will be much improved compared to con-
ventional methods.

In various embodiments, documents are queried using the
indexes established by the above embodiments of document
indexing methods.

FIG. 41is a flowchart illustrating an embodiment of a search
engine data query process.

55

60

65

At 510, a query is received.

At 520, a monadic partition operation is performed on the
query to obtain a plurality of monadic partitions.

At 530, the monadic partitions of the query are traversed; in
other words, 532-536 are carried out for each monadic parti-
tion in the document.

At 532, a monadic partition of the document is compared
with a filter character list to determine whether it is a filter
character.

At 534, if a monadic partition is a filter character, a binary
partition is formed by combining the monadic partition with
at least one other monadic partition adjacent to it, and an
index is searched for this binary partition and a query result is
obtained.

US 9,275,128 B2

9

At 536, if a monadic partition is not a filter character, an
index is searched for this monadic partition and a query result
is obtained.

In some embodiments, after 538 is completed, the binary
partitions are further processed in a way that is similar to the
processing of the monadic partitions. It is determined whether
each binary partition is a filter word or phrase based on a
previously established list that includes binary partitions, and
if so, no additional search is needed. Else, in some embodi-
ments, one or more new tertiary partitions are formed based
on the binary partition and one or more adjacent monadic
partitions; in some embodiments, one or more new quater-
nary partitions are formed based on the binary partition and
one or more adjacent binary partitions.

At 540, query results for all partitions are combined. The
query results are optionally returned and displayed to a user
according to a preset condition; for example, the top 20
unique results are returned.

In some embodiments, a monadic partitions of the query is
processed according to the following exemplary pseudo code:

10

15

10

engine, the search engine will query “Chinese,” “Chinese
Stock,” “Stock Market,” and “Market” and the query results
are combined and unique entries from the combined query
result are displayed to the user.

Corresponding to the embodiments of the document index-
ing and data query processes above, the application further
provides embodiments of document index systems and data
query systems. Example implementations of embodiments of
systems for document indexing and data querying are
described below. The systems are described to include a num-
ber of modules or units. The modules or units can be imple-
mented as software components executing on one or more
processors, or as hardware such as programmable logic
devices and/or Application Specific Integrated Circuits
designed to perform certain functions or combinations
thereof. In some embodiments, the modules/units/subunits
can be embodied by a form of software products which can be
stored in a nonvolatile storage medium (such as optical disk,
flash storage device, mobile hard disk, etc.), including a num-
ber of instructions for making a computer device (such as

Token token = getCurrentToken();
If (isFreqWord(token))

{
Token token2;
If (isFirstWord(token))
token2 = mergeToken (nextToken, token);

//obtaining the current partition

//ilter character

// backward combining if

//if the current partition is a high-frequency

//the token is at the beginning

//of a sentence
else
token2=mergeToken(prevToken, token);

// forward combining if

//the token is not at the
//beginning of a sentence

doTokenSearch(token2);

}

else
doTokenSearch(token);

//query the new combined partition

// querying directly

// if it is not a high-frequency filter character,

For the queries carried out according to the embodiments
above, it is guaranteed that no high-frequency character exists
in the index alone since all the high-frequency characters are
combined with other monadic partitions to form polynary
partitions before the index is established. Thus, search engine
resources are conserved since high-frequency character
searching is avoided, and query result accuracy is also
improved.

Although the embodiments use Chinese characters as
indexing and querying examples, the method applies to
search engines that carry out indexing and querying opera-
tions in languages other than Chinese. For example, in a
Chinese based search engine, a monadic partition refers to
each Chinese character in a document or in a query. The
monadic partitions obtained by carrying out partition opera-
tions on a data query “*+ER (“Chinese stock market”) are
“tf” (“Chinese”), “BE” (“nation”), “B&” (“stock”), and
“i” (“market”). Similarly, in an English based search
engine, the query of “Chinese Stock Market” can be parti-
tioned into monadic partitions “Chinese,” “Stock,” and “Mar-
ket.” If “stock™ is a high frequency word in a filter word list
established according to the frequencies of appearance of
words in a set of documents, “stock” will combine with
“Chinese” and “Market,” respectively, to form two new poly-
nary partitions: “Chinese Stock™ and “Stock market.” There-
fore, the final partitions of the query are “Chinese,” “Chinese
Stock,” “Stock Market,” and “Market,” respectively. When
the phrase “Chinese Stock Market” is queried by a search

40

45

50

55

60

65

personal computers, servers, network equipment, etc.) imple-
ment the methods described in the embodiments of the
present invention. The modules or units may be implemented
on a single device or distributed across multiple devices. The
functions of the modules or units may be merged into one
another or further split into multiple sub-modules or sub-
units.

FIG. 6 is a block diagram illustrating an embodiment of a
system configured to index documents. System 600 may be
implemented using one or more computing devices such as a
personal computer, a server computer, a handheld or portable
device, a flat panel device, a multi-processor system, a micro-
processor based system, a set-top box, a programmable con-
sumer electronic device, a network PC, a minicomputer, a
large-scale computer, a special purpose device, a distributed
computing environment including any of the foregoing sys-
tems or devices, or other hardware/software/firmware com-
bination that includes one or more processors and memory
coupled to the processors and configured to provide the pro-
cessors with instructions.

In the example shown, system 600 includes an obtaining
unit 610, a partition unit 620, a determining unit 630, and an
indexing unit 640. The obtaining unit 610 is adapted to obtain
adocument to be indexed. The partition unit 620 is adapted to
carry out a partition operation on the document obtained by
the obtaining unit 610 so as to obtain monadic partitions. The
determining unit 630 is adapted to determine whether each
monadic partition is a filter character. If a monadic partition is

US 9,275,128 B2

11

a filter character, the indexing unit 640 is adapted to form a
polynary partition by combining the monadic partition and at
least one monadic partition adjacent to the monadic partition,
and then establish an index for the polynary partition. If a
monadic partition is not a filter character, the indexing unit
640 is adapted to establish an index for the monadic partition
directly.

FIG. 7 is a block diagram illustrating another embodiment
of a system configured to index documents.

In the example shown, system 700 includes a presetting
unit 710, a loading unit 720, an obtaining unit 730, a partition
unit 740, a determining unit 750, and an indexing unit 760.

The presetting unit 710 is adapted to preset a filter charac-
ters list. The loading unit 720 is adapted to load the filter
characters list in the presetting unit 710. The obtaining unit
730 is adapted to obtain a document to be indexed. The
partition unit 740 is adapted to carry out partition operations
on the document obtained by obtaining unit 730 to obtain
monadic partitions. The determining unit 750 is adapted to
determine whether each monadic partition is a filter character.
In some embodiments, the determining unit 750 may further
include a partition-traversing unit to traverse the monadic
partitions and a filter character searching unit to determine
whether each monadic partition is a filter character by search-
ing the filter character list.

The indexing unit 760 is adapted to form a polynary parti-
tion by combining the monadic partition and at least one
monadic partition adjacent to the monadic partition, then
establish an index for the polynary partition if the monadic
partition is a filter character; if the monadic partition is not a
filter character, the indexing unit will establish an index for
the monadic partition directly. In some embodiments, the
indexing unit 760 forms a binary partition by combining a
monadic partition and a monadic partition adjacent to the
monadic partition; an index is established for the binary par-
tition.

The index established by systems of document indexing
above is used by systems for data querying in a search engine
to carry out searching operations.

FIG. 8 is a block diagram illustrating an embodiment of a
system configured to carry out data querying for a search
engine. The system 800 includes an obtaining unit 810, a
partition unit 820, a determining unit 830, a searching unit
840, and a combining unit 850.

The obtaining unit 810 is adapted to obtain the data to be
queried. The partition unit 820 is adapted to carry out partition
operations on the data obtained by the obtaining unit to obtain
monadic partitions. The determining unit 830 is adapted to
determine whether each monadic partition is a filter character.
The searching unit 840 is adapted to form a polynary partition
from a monadic partition and at least one monadic partition
adjacent to the monadic partition and search the index accord-
ing to the polynary partition when it is determined by the
determining unit 830 that the monadic partition is a filter
character; if the monadic partition is not a filer character,
system 800 searches the index according to the monadic
partition directly. The combining unit 850 is adapted to com-
bine the query results obtained by the searching unit 840 after
searching the index.

FIG. 9 is a block diagram illustrating another embodiment
of'a system configured to carry out data querying for a search
engine. The system 900 includes a loading unit 910, an
obtaining unit 920, a partition unit 930, a determining unit
940, a searching unit 950, and a combining unit 960.

The loading unit 910 is adapted to load a preset filter
character list. The obtaining unit 920 is adapted to obtain the
data to be queried. The partition unit 930 is adapted to carry

10

15

20

25

30

35

40

45

55

60

12

out a partition operation on the data obtained by the obtaining
unit 920 and obtain monadic partitions. The determining unit
940 is adapted to determine whether each monadic partition is
a filter character. In some embodiments, the determining unit
940 may further include a partition-traversing unit which is
adapted to traverse monadic partitions and a filter character
searching unit which is adapted to determine whether each
monadic partition is a filter character by searching the filter
characters list.

The searching unit 950 is adapted to form a polynary par-
tition by combining a monadic partition and at least one
monadic partition adjacent to the monadic partition and
search the index according to the polynary partition when it is
determined by the determining unit 940 that the monadic
partition is a filter character, or search the index according to
the monadic partition when it is determined by the determin-
ing unit 940 that the monadic partition is not a filter character.
In some embodiments, the searching unit 950 is adapted to
form a binary partition by combining a monadic partition and
amonadic partition adjacent to the monadic partition, and the
searching unit searches the index according to the binary
partition. The combining unit 960 is adapted to combine the
query results obtained by the searching unit 950 after search-
ing the index.

The system embodiments above convert the query of a
high-frequency character into the query of a low-frequency
character by forming limited polynary partitions from high-
frequency monadic partitions. Therefore, the system resource
used by each query can be reduced and the accuracy of the
query results is not sacrificed in the mean time. The query
performance of the search engine is much improved compar-
ing to the conventional methods.

This application is described referring to the flow chart
and/or block diagram of the method, system, and computer
program product according to the embodiments of this appli-
cation. It should be understood that each flow and/or block in
the flow chart and/or block diagram and the combination of
flows and/or blocks in the flow chart and/or block diagram
may be realized in computer program instruction. In fact, the
entire application may be described in the general context of
a computer executable instruction that is executed by a com-
puter, for example, a program module. Generally, the pro-
gram module includes routines, programs, objects, compo-
nents, data structures, etc., for executing a specified task or
implementing a specified abstract data type. Alternatively, the
present invention may be implemented in a distributed com-
puting environment, where a remote processing device con-
nected through a communication network executes the task.
In the distributed computing environment, the program mod-
ule may be located in a local or remote computer storage
medium which includes a storage device

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

What is claimed is:

1. A method for generating a document index, comprising:

generating a preset filter character list, wherein generating
includes:

determining monadic partitions from a sample set of docu-
ments, wherein monadic partitions comprise character
text;

determining an appearance frequency for each of at least a
subset of the monadic partitions among the sample set of
documents; and

US 9,275,128 B2

13

including a subset of the monadic partitions into the preset
filter character list based at least in part on appearance
frequencies corresponding to respective ones of the
monadic partitions;
obtaining a document to be indexed;
performing a monadic partition operation on the document
to obtain a plurality of monadic partitions associated
with the document;
for a first monadic partition in the plurality of monadic
partitions associated with the document:
determining that the first monadic partition is a first filter
character monadic partition based at least in part on
matching the first monadic partition with the first filter
character monadic partition of the preset filter char-
acters list; and
in response to the determination that the first monadic
partition is the first filter character monadic partition:
not adding a first entry in the document index corre-
sponding to the first filter character monadic parti-
tion;
forming a polynary partition by combining the first
filter character monadic partition with at least one
other monadic partition in the plurality of monadic
partitions associated with the document, wherein
the polynary partition comprises a binary partition,
wherein the at least one other monadic partition is
adjacent to the first filter character monadic parti-
tion in the document; and
adding the first entry in the document index corre-
sponding to the polynary partition; and
for a second monadic partition in the plurality of monadic
partitions associated with the document:
determining that the second monadic partition is not a
second filter character monadic partition based at
least in part on not matching the second monadic
partition with the second filter character monadic par-
tition of the preset filter characters list; and
in response to the determination that the second monadic
partition is not the second filter character monadic
partition, adding a second entry in the document index
corresponding to the second monadic partition.
2. The method of claim 1, wherein forming the binary
partition further comprises:
forming the binary partition by combining the first filter
character monadic partition with a subsequent monadic
partition in the document in the event that the first filter
character monadic partition is a first monadic partition in
the document;
forming the binary partition by combining the first filter
character monadic partition with a previous monadic
partition in the document in the event that the first filter
character monadic partition is a last monadic partition in
the document; and
forming a first binary partition by combining the first filter
character monadic partition with the previous monadic
partition and forming a second binary partition by com-
bining the first filter character monadic partition with the
subsequent monadic partition in the event the first filter
character monadic partition is neither the first monadic
partition in the document nor the last monadic partition
in the document.
3. The method of claim 1, further comprising:
determining that the binary partition is not a first filter
character binary partition based at least in part on not
matching the binary partition with the first filter charac-
ter binary partition of the preset filter characters list;

10

15

20

25

30

35

40

45

55

60

65

14

wherein the first entry added in the document index corre-
sponds to the binary partition.
4. The method of claim 1, further comprising:
determining that the binary partition is a first filter charac-
ter binary partition based at least in part on matching the
binary partition with the first filter character binary par-
tition of the preset filter characters list;
in response to the determination that the binary partition is
the first filter character binary partition, forming a ter-
nary partition by combining the first filter character
binary partition with at least one other monadic partition
that is adjacent to the binary partition in the document;
and
determining that the ternary partition is not a first filter
character ternary partition based at least in part on not
matching the ternary partition with the first filter char-
acter ternary partition of the preset filter characters list;
wherein the first entry added in the document index corre-
sponds to the ternary partition.
5. A method for querying data, comprising:
generating a preset filter characters list, wherein generating
includes:
determining monadic partitions from a sample set of
documents, wherein monadic partitions comprise
character text;
determining an appearance frequency for each of at least
a subset of the monadic partitions among the sample
set of documents; and
including a subset of the monadic partitions into the
preset filter characters list based at least in part on
appearance frequencies corresponding to respective
ones of the monadic partitions;
receiving a data query;
performing a monadic partition operation on the data query
to obtain a first plurality of monadic partitions associ-
ated with the data query;
for a first monadic partition in the first plurality of monadic
partitions associated with the data query:
determining that the first monadic partition is a first filter
character monadic partition based at least in part on
matching the first monadic partition with the first filter
character monadic partition of the preset filter char-
acters list; and
in response to the determination that the first monadic
partition is the first filter character monadic partition:
not searching a preset index using the first filter char-
acter monadic partition;
forming a polynary partition by combining the first
filter character monadic partition with at least one
other monadic partition in the first plurality of
monadic partitions associated with the data query,
wherein the polynary partition comprises a binary
partition, wherein the at least one other monadic
partition is adjacent to the first filter character
monadic partition in the data query; and
searching the preset index using the polynary parti-
tion to obtain a search result corresponding to the
polynary partition; and
for a second monadic partition in the first plurality of
monadic partitions associated with the data query:
determining that the second monadic partition is not a
second filter character monadic partition based at
least in part on not matching the second monadic
partition with the second filter character monadic par-
tition of the preset filter characters list;
in response to the determination that the second monadic
partition is not the second filter character monadic

US 9,275,128 B2

15

partition, searching the preset index using the second
monadic partition to obtain a search result corre-
sponding to the second monadic partition; and
combining the search results to form a final query search
result.
6. The method of claim 5, wherein the preset index is
established by:
obtaining a document to be indexed;
performing an indexing monadic partition operation on the
document to obtain a second plurality of monadic parti-
tions associated with the document;
for a third monadic partition in the second plurality of
monadic partitions associated with the document:
determining that the third monadic partition is a third
filter character monadic partition based at least in part
on matching the third monadic partition with the third
filter character monadic partition of the preset filter
characters list; and
in response to the determination that the third monadic
partition is the third filter character monadic partition:
not adding a first entry in the preset index correspond-
ing to the third filter character monadic partition;
forming a second polynary partition by combining the
third filter character monadic partition with at least
one other monadic partition in the second plurality
of monadic partitions associated with the docu-
ment, wherein the at least one other monadic par-
tition is adjacent to the third filter character
monadic partition in the document; and
adding the first entry in the preset index correspond-
ing to the second polynary partition; and
for a fourth monadic partition in the second plurality of
monadic partitions associated with the document:
determining that the fourth monadic partition is not a
fourth filter character monadic partition based at
least in part on not matching the fourth monadic
partition with the fourth filter character monadic
partition of the preset filter characters list; and
in response to the determination that the fourth
monadic partition is not the fourth filter character
monadic partition, adding a second entry in the
preset index corresponding to the fourth monadic
partition.
7. The method of claim 5, wherein forming the binary
partition further comprises:
forming the binary partition by combining the first filter
character monadic partition and a subsequent monadic
partition in a document in the event that the first filter
character monadic partition is a first monadic partition in
the document;
forming the binary partition by combining the first filter
character monadic partition and a previous monadic par-
tition in the document in the event that the first filter
character monadic partition is a last monadic partition in
the document; and
forming a first binary partition by combining the first filter
character monadic partition with the previous monadic
partition and forming a second binary partition by com-
bining the first filter character monadic partition with the
subsequent monadic partition in the event that the first
filter character monadic partition is neither the first
monadic partition in the document nor the last monadic
partition in the document.
8. A document indexing system, comprising:
one or more processors coupled to an interface, configured
to:

30

40

45

55

60

65

16

generate a preset filter characters list, wherein to gener-
ate includes to:
determine monadic partitions from a sample set of
documents, wherein monadic partitions comprise
character text;
determine an appearance frequency for each of at
least a subset of the monadic partitions among the
sample set of documents; and
include a subset of the monadic partitions into the
preset filter characters list based at least in part on
appearance frequencies corresponding to respec-
tive ones of the monadic partitions;
obtain a document to be indexed;
perform a monadic partition operation on the document
to obtain a plurality of monadic partitions associated
with the document;
for a first monadic partition in the plurality of monadic
partitions:
determine that the first monadic partition is a first
filter character monadic partition based at least in
part on matching the first monadic partition with
the first filter character monadic partition of the
preset filter characters list; and
in response to the determination that the monadic
partition is the first filter character monadic parti-
tion:
do not add a first entry in a document index corre-
sponding to the first filter character monadic par-
tition;
form a polynary partition by combining the first
filter character monadic partition with at least
one other monadic partition in the plurality of
monadic partitions associated with the docu-
ment, wherein the polynary partition comprises
a binary partition, wherein the at least one other
monadic partition is adjacent to the first filter
character monadic partition in the document;
and
add the first entry in the document index corre-
sponding to the polynary partition; and
for a second monadic partition in the plurality of
monadic partitions associated with the document:
determine that the second monadic partition is not a
second filter character monadic partition based at
least in part on not matching the second monadic
partition with the second filter character monadic
partition of the preset filter characters list; and
in response to the determination that the second
monadic partition is not the second filter character
monadic partition, add a second entry in the docu-
ment index corresponding to the second monadic
partition; and
one or more memories coupled to the one or more proces-
sors, configured to provide the processors with instruc-
tions.
9. The system of claim 8, wherein forming the binary
partition further comprises:
forming the binary partition by combining the first filter
character monadic partition with a subsequent monadic
partition in the document in the event that the first filter
character monadic partition is a first monadic partition in
the document;
forming the binary partition by combining the first filter
character monadic partition with a previous monadic
partition in the document in the event that the first filter
character monadic partition is a last monadic partition in
the document; and

US 9,275,128 B2

17

forming a first binary partition by combining the first filter
character monadic partition with the previous monadic
partition and forming a second binary partition by com-
bining the first filter character monadic partition with the
subsequent monadic partition in the event the first filter
character monadic partition is neither the first monadic
partition in the document nor the last monadic partition
in the document.
10. A data querying system, comprising:
one or more processors coupled to an interface, configured
to:
generate a preset filter characters list, wherein to gener-
ate includes to:
determine monadic partitions from a sample set of
documents, wherein monadic partitions comprise
character text;
determine an appearance frequency for each of at
least a subset of the monadic partitions among the
sample set of documents; and
include a subset of the monadic partitions into the
preset filter characters list based at least in part on
appearance frequencies corresponding to respec-
tive ones of the monadic partitions;
receive a data query;
perform a monadic partition operation on the data query
to obtain a first plurality of monadic partitions asso-
ciated with the data query;
for a first monadic partition in the first plurality of
monadic partitions associated with the data query:
determine that the first monadic partition is a first
filter character monadic partition based at least in
part on matching the first monadic partition with
the first filter character monadic partition of the
preset filter characters list; and
inresponse to the determination that the first monadic
partition is the first filter character monadic parti-
tion:
not search a preset index using the first filter char-
acter monadic partition;
form a polynary partition by combining the first
filter character monadic partition with at least
one other monadic partition in the first plurality
of monadic partitions associated with the data
query, wherein the polynary partition comprises
a binary partition, wherein the at least one other
monadic partition is adjacent to the first filter
character monadic partition in the data query;
and
search the preset index using the polynary partition
to obtain a search result corresponding to the
polynary partition;
for a second monadic partition in the first plurality of
monadic partitions associated with the data query:
determine that the second monadic partition is not a
second filter character monadic partition based at
least in part on not matching the second monadic
partition with the second filter character monadic
partition of the preset filter characters list; and
in response to the determination that the second
monadic partition is not the second filter character
monadic partition, search the preset index using the
second monadic partition to obtain a search result
corresponding to the second monadic partition; and

10

15

20

30

40

45

55

18

combine the search results to form a final query search
result; and
one or more memories coupled to the one or more proces-
sors, configured to provide the processors with instruc-
tion.
11. The system of claim 10, wherein the preset index is

established by:

obtaining a document to be indexed;
performing an indexing monadic partition operation on the
document to obtain a second plurality of monadic parti-
tions associated with the document;
for a third monadic partition in the second plurality of
monadic partitions associated with the document:
determining that the third monadic partition is a third
filter character monadic partition based at least in part
on matching the third monadic partition with the third
filter character monadic partition of the preset filter
characters list; and
in response to the determination that the third monadic
partition is the third filter character monadic partition:
not adding a first entry in the preset index correspond-
ing to the third filter character monadic partition;
forming a second polynary partition by combining the
third filter character monadic partition with at least
one other monadic partition in the second plurality
of monadic partitions associated with the docu-
ment, wherein the at least one other monadic par-
tition is adjacent to the third filter character
monadic partition in the document; and
adding the first entry in the preset index correspond-
ing to the second polynary partition; and
for a fourth monadic partition in the second plurality of
monadic partitions associated with the document:
determining that the fourth monadic partition is not a
fourth filter character monadic partition based at least
in part on not matching the fourth monadic partition
with the fourth filter character monadic partition of
the preset filter characters list; and
in response to the determination that the fourth monadic
partition is not the fourth filter character monadic
partition, adding a second entry in the preset index
corresponding to the fourth monadic partition.
12. The method of claim 11, wherein forming the binary

partition further comprises:

forming the binary partition by combining the first filter
character monadic partition and a subsequent monadic
partition in the document in the event that the first filter
character monadic partition is a first monadic partition in
the document;

forming the binary partition by combining the first filter
character monadic partition and a previous monadic par-
tition in the document in the event that the first filter
character monadic partition is a last monadic partition in
the document; and

forming a first binary partition by combining the first filter
character monadic partition with the previous monadic
partition and forming a second binary partition by com-
bining the first filter character monadic partition with the
subsequent monadic partition in the event that the first
filter character monadic partition is neither the first
monadic partition in the document nor the last monadic
partition in the document.

#* #* #* #* #*

